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We present a theoretical framework that can be wused to treat Ex
o
approximation techniques for very general classes of parameter estimaticn )
.',‘\(‘..-"
j problems involving distributed systems that are cither first or second order in ::::
) .":.r'i
=,
' time. Using the approach developed, one can obtain both convergence and ?:ﬁ".'t
MOV
\ - - ;.
stability (continuous dependence of parameter estimates with respect to the ;
- R
observations) under very weak regularity and compactness assumptions on the ;-::' s
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set of admissible parameters. This unified theory can be used for many _f-:'_".:.j_
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problems found in the recent literature and in many cases offers significant

improvements to existing results,
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1. Introduction

An important class of scientific problems related to the control of flexible
space structures entails the estimation of parameters in distributed or partial
differential equation models. These inverse or parameter identification
problems arise in several contexts. A rather obvious class of such problems
involves the development and identification of physical models for flexible
structures — e.g., see [BCl1], [BC2], [BCR], [BR2], [BPR], [BWIC], [BFW]. In these
problems one typically investigates models from structural mechanics which
contain parameters representing elastic properties (such as stiffness, damping) of
materials. The inverse problems then consist of estimating these parameters

using data obtained from observations of the system response to dynamic loading
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or displacement. The partial differential equation models usually are second
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order in time, higher order in space (for example, the Euler-Bernoulli or
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Timoshenko beam models and their higher dimensional analogues for plates, etc.).
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The related inverse problems can prove quite challenging, but are extremely
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important as a precursor to and integral part of the design of control strategies
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for space structures.

@

A second, less obvious, class of inverse problems that are important in the
study of space structures involves those arising in material testing, in particular,
in the area of nondestructive evaluation of materials. These problems, such as
those related to the detection of structural flaws (broken fibers, delaminations,
cracks) in fiber recinforced composite materials, have been addressed at NASA

(for example, in connection with cvaluation of the solid rocket motors for the
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Space Shuttle) using a varicty of techniques (acoustic, thermal, etc.). One

technique [HWW], [BKO] entails the use of thermal diffusivity properties (a

thermal tomography) to characterize materials. The resulting inverse problems

w3

-
-

involve using boundary observations for the estimation of thermal diffusion

coefficients and interior boundaries of the domain (i.e. the geometrical

structure of the system domain) for the heat equation in two or three space

dimensions. These so-called domain identification problems thus constitute an

important class of parabolic system identification problems related to space

structures.

In this paper we present a general convergence/stability (continuous

dependence on observations) framework for approximation methods to treat

parameter identification problems (see [BCK]) involving distributed parameter

SR

i

systems. This new parameter estimation convergence framework combines a
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weak version of the system (in terms of sesquilinear forms in the spirit used
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in [BK1]) with the resolvent convergence form of the Trotter-Kato
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N approximation theorem [P}, [BK2]. The very general convergence results :}:
iy Sl
L depend (in addition, of course, to the usual properties for the associated :‘-'\-:.:
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approximating subspaces) on three properties of the parameter (@ € Q)
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dependent sesquilinear form o(q)(-,-) describing the system: (A) continuity o

(with respect to the parameter);, (B) uniform (in the parameter) coercivity; and

(C) uniform (in the paramecter) boundedness. The approach permits one to

L. give convergence and stability arguments in inverse problems under extremely

weak compactness assumptions on the admissible parameter spaces Q
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(equivalent to those in typical variational or weak approaches--see {Bl],
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(BCR]) without requiring knowledge of smoothness of solutions usually a part
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of the variational and general finite element type arguments. Thus this
approach combines in a single framework the best features of a semigroup
approximation approach (i.c., the Trotter-Kato theorem) with the best features
of a variational approach (weak assumptions on Q). The weakening of the
compactness criteria on Q is of great computational importance since the
constraints associated with these criteria should be implemented in problems
(see [BI] for further discussion and examples).

An additional significant feature of the approach described in this paper
is that for first order systems it yields directly a stronger convergence (in the
spatial coordinate) than one readily obtains without extra effort in either the
convergence arguments using the usual operator convergence form of the
Trotter-Kato formulation (e.g., see Theorem 2.2 of [BCK]) and Theorem 2.4 of
[KW]) or the finite element type variational arguments (e.g., see, Theorem 4.1
of [BR1] and the related remarks in [BKL1])).

While the approach we present here does involve coercivity of certain

sesquilinear forms associated with the system dynamics, its applicability is not
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restricted to parabolic systems which generate analytic semigroups. As we

e,

shall demonstrate in Section 3 below, it can be used to treat problems in which
the underlying semigroup is not analytic (e.g., those involving Euler-Bernoulli
equations for beams with various types of damping-viscous, Kelvin-Voigt,
spatial hysteresis), improving substantially on some of the currently known
rcsults for these problems. With appropriate modifications, this theoretical
framework can be generalized to also allow an clegant treatment of problems

involving functional partial differential equations, ¢.g., beams with Boltzmann
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damping (i.c., time hysteresis) -- see [BFW].
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2. First Ordcr Systcms

We consider first order systems dependent on parameters q € Q described

by an abstract equation

u(t) = A(q)u(t) + F(t,q)
(2.1)

..,
>

u(0) = uy(q)
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in a Hilbert space H. The admissible parameter space Q is a metric space
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with metric d and for q € Q, we assume that A(q) is the infinitesimal

generator of a C, semigroup T(t;q) on H. We assume that we are given
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observations U; € H for the mild solution values u(t,q) of (2.1); ie, we solve
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in H. We then consider the least squares identification (ID) problem of

#|

minimizing over q € Q the functional B
3
2 J(@) = I ju(tgq) = G (2.3) o~
‘ "o
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: Such problems are, in general, infinite dimensional in both the state u and s
- .\'
O 3
. the parameter g and thus one must consider a sequence of computationally N
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tractable approximating problems. These can be, for our purposes, best Y
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P described in terms of parameter dependent sesquilinear forms o{q)-,-) ':_:-j-f.:
x. v'.'l
» associated with (2.1) or (2.2) (i.e., forms which define the opcrators A(q) in ‘ '
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(2.1)). For more dctails and examples in the parabolic case, we refer the
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reader to (BK1]. Briefly, let V and H be Hilbert spaces with V continuously
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and denscly imbedded in H. Denote a family of parameter dependent
sesquilinear forms by o(q): V x V - €, q € Q. We assume that o possesses the

following properties:
(A) Continuity: For q,g € Q, we have forall pp € V

lo(a)($.9) — o(@)(&,¥) € d(a,DIdlyI¥y.-

(B) Coercivity: There exist ¢, > 0 and some real ), such that for q € Q,
¢ € V we have

o(a)($.9) + A JjoiZ 2 c, 1413
(C) Boundedness: There exist ¢, > 0 such that for q € Q, ¢, € V we have

[Ha) (9N € c i\ ¥y

Under these assumptions, o defines in the usual manner (e.g., see [K], [S])
operators A(q) such that o(q)(¢,¢) = <—A(q)0§,¢:>H for ¢ € dom(A(q)), ¥ € V with
dom(A(q)) dense in V. Furthermore, A(q) is the generator of an analytic
semigroup T(t;q) on H (indeed, A(q) is sectorial with (Al — A(q))dom(A(q)) = H)
and mild solutions of (2.1) possess additional regularity (e.g. see Chap. 4 of [P]and
Chap. 4 of (5]) under appropriate assumptions on F. Property (B) guarantees that
for X 2 ), the resolvent operator Ry(A(q)) = (M - A(Q))! exists as a bounded
opcrator on H; in fact, it follows readily from (B) that (assuming g € Kl-ly) we
have

¢, IRy (A@)y € bR, (A@)dy
€ [WglR y (A(Q))¥y

€ K¢ IRy (A(Q)) ¥y
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and hence for €V

k2
IR \(A(@)ty €~y (2.4)
1
while for ¢ € H we find
k2
IR\(AG@)¥y € Wiy (2.5)

1

In addition, one can use (B) and (A) to argue that q - R,(A(q)) is a
continuous mapping from Q to V. It is these ideas that can be modified to
give resolvent convergence in the approximation schemes which we introduce
next.

We consider Galerkin type approximations in the context of sesquilinear
forms (e.g., see [BKI1] for further details). Let HN be a family of finite
dimensional subspaces of H satisfying PNz = z for z € H where PN is the
orthogonal projection of H onto HN. We further assume that HN C V and that
the family possesses certain V-approximation properties to be specified below.
If we now consider the restriction of o(q)(-,-) to HN x HN, we obtain
operators AN(q): HY -+ HN which, because of (B), satisfy a uniform dissipative
inequality and can be shown to generate semigroups TN(t;q) in HN. These are
then used to define approximating systems for (2.2):

¢
wN(ta) = TNGOPMu@ + | TSP FGs.as 26)
0

One thus obtains a sequence of approximating ID problems consisting of

minimizing over Q

INa) = T utga) - ) (2.7)
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3 In problems where Q is infinite dimensional (the usual case in many inverse . '. ':
i X ,l'\
H . . R M TR
.; problems of interest), on must also make approximations Q™ for Q (sec {BD] A Ry
{BR2] for details). To include this aspect of the problem in our discussion .,'.
[} [ L W
RV
\ here does not entail any essential mathematical difficulties. Since it would 2 ﬂ
i : |'l
: increase the notational clutter and provide no new mathematical insight, we &‘cs',
)
do not pursue the theory in that generality. ey
o
! erend
) To obtain convergence and continuous dependence (of parameter estimates ._-'_:{.f
N
with respect to observations) results for the solutions @Y of minimizing JYN in ,'-:-:"‘N
! v
(2.7), it suffices under the assumption that (Q,d) is a compact space (see [Bl]) .
™, .r: :
; to argue: for arbitrary (qN) C Q with q¥ - q we have ulN(t;qN) - u(t;q) for each V\,t )
) ' '
) . . . - o
\ t. Under reasonable assumptions on F and u,,. this can be argued if one first N ':.‘\-
-
shows that TN(t;q¥)PNz - T(t;q)z for arbitrary qN =~ q and z € H. To do this V'. y
F 0 N
Mot
W
| one can use several versions of the Trotter- Kato theorem [P], [BK2]. We state \-‘5.:\{-
t ﬁ. *
LR Ny
precisely the "resolvent convergence form" of this theorem in a form that is ‘_;;}";k_
S K
general enough for us to use in several contexts subsequently in this paper. ,—\,%
Y
~
Let X and XN, N = 1,2, .., be Hilbert spaces, XN € X, and let PN: X ~ XV o,
AN
. e . oF A
: be the orthogonal projection of X onto XN. We assume the X™s approximate _q.r::.;
i ._‘?.‘u | Sal
X in the sense that PNx = x for all x € X. Then we have: TN
N !
"J\',‘:;:'f
AGAL,
Theorem 2.1: Let AN and A be infinitesimal generators of C, semigroups SN :::-'::f
o
A
and S(t) on XN and X, respectively, satisfying: S '-':I
(1) There exist constants w, M such that ISN(t)I < Me"* for each N: e .-'.‘
(ii) There exists ) € p(4) Ng_, p(AN) with Re \ > w such that
RX(AN)PNx = Ry (A)x for each x € X. L .‘-x
~ .
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(iii) For each x € X, SN)PNx = S(t)x uniformly in t on any compact interval

[0.t,.

We may assume without loss of generality that the constants w and M of
(i) are chosen so that S(t) also satisfies the bound in (i).

There is an alternate version (we shall for obvious reasons refer to this
version as the "operator convergence form") of the Trotter-Kato thcorem which
has been frequently used [BCK], [BCIl], [BC2], [R] in parameter estimation

problems. This version replaces condition (ii) above by the condition:

(iV’) There exists a set D dense in X such that for some )\, (\I — A)D is dense

in X and ANPNx - 4x for all x €D.

As we have already noted, it is the resolvent convergence form of this
theorem which we shall wish to make use of in our theoretical framework
since, as we shall show, for our first order systems condition (ii) will follow
readily from (A), (B), (C) and a condition on how HYN approximates H. The
entire theory will require only that Q be compact in the metric d used in the
continuity statement (A) for the sesquilincar form. This will, in general, be
much weaker than that compactness required for use in proofs employing
condition (ii'), since the requirements on "qN = q" to insure AN@QMPNz ~ A(q)z
typically involve convergence of some derivatives of the qN. For example, in
first order parabolic ecquations containing variable coefficients to be
estimated, this results in a requirement that Q be compact in H' whereas use
of the sesquilinear form approach developed in this paper requirecs only

compactness of Q in C or L* (see [B1] for further discussion of this point).
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Before turning to our convergence arguments, we state the convergence
properties required of the approximating subspaces HN alluded to above.

Throughout our discussions, we shall assume:

(C1) For each z € V, there exists zN € HN such that |z — z"lv -0 as

N -~ =

Theorem 2.2: Let conditions (A), (B), (C) and (Cl1) hold and qN = q in Q. Then

Jor x =3, RX(AN(qN))PNz ~ R, (A(q))z in the V norm for any z € H.

Proof: First note that since AN(Q™) results from the restriction of o to HY

X

HY, we can choose ) = ), in (B) so that X € p(A(q)) Ny_, P(AN(@QM) with X > w

(and indeed bounds similar to those of (2.4), (2.5) hold for R,(AN@q™))PN).

Let z € H be arbitrary and for notational convenience put w = w(q)
Ry(A(@))z and wN = wN(qM) = R,(AN@QM))PNz. Since w € dom(A(q)) C V, we
may use condition (Cl) to define a sequence (W} satisfying [wN — wly = 0 as ‘
N -+,

We wish to show |[wN — wly = 0. If we argue that [wN - ;\v"ﬂv = 0, the
desired results follow immediately from the triangle inequality.

Let zN = wN — wN 50 that zN € HN € V. Using <-,-> to denote the inner

product in H, we find

a(q)(w,zN) = <—A(qQ)w,z2V) = <X — A(Q))w.ZN> — a<w, 2D

2,2N> = 2w, 2N

and
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AqM(WN,zN) = —AN@WN N> = (0 = AN@Y)IWNZN> — awN N>

<PNz,zN> = acwN2N>

<z,2¥> = 2\ <wN zN.
Hence we have

o(@)(w,zV) = o(@M)(WN,zN) + 2w — w,ZND.

Using this with (B) we obtain

eyl2NE € o(@MENN) + N2 = oMWz ~ o(@™M(wWN,2M) + 22N

L}

o(@)(w,z) + A <w—wzN> ~ o(qM(whzN) + a2

1§

o(a@)(w.z¥) — o(aM)(w,2N) + o(qMw—wN,zN)

+ M<w—wNzZN> + ZNE).
If we use (A) and (C), we thus have
clzN3 < d(a,qaMiwlzNly + czlw—&vallev + 2 (Kw=wNzN> + 2N2).
Finally, since
w—wNzN> = Cw—wNZN> & WN—wNZND = Cw—wNzN> — NN,
the above inequality may be written

N2 N, ~ N N ~N_N
¢ 12N € d(a,aMiwlylzNly + clw = whi 2N, + 2w = whz™

¢ d(a,aMiwtylzNy + cgfw = whiyizNy + Ditw = WYy,
Thus, using |1y € ki-fy we find

c, 12Ny € d@a,aMiwly + (c, + DIKDIw = whyy,
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N which, from the definition of (CVN} and the fact that q¥ - q, yields the
desired convergence zN = wN — wN = 0 in V norm.

Since V norm convergence is stronger than H-norm convergence, we can
use the results of this theorem along with Theorem 2.1 for X = H, XN = HN,
PN = PN 4N = AN@N), 4 = A(q) to obtain immediately that TN:qMPNz ~
T(t;q)z for z € H, the convergence being in the H norm. This along with (2.2)
and (2.6) can be used to arguc the desired convergence uMN(t:q™) ~ u(t;q) in the
H norm (assuming, of course, appropriate smoothness of F and u, in q € Q).
However, with no additional assumptions and only a little extra effort, one
can obtain this convergence in the V norm. As we shall explain below, this
stronger convergence is often immensely useful in parameter estimation
problems where the observations may be continuous in the V norm, but not in

the H norm.

Theorem 23: Under the hypotheses of Theorem 2.2, we have for each z € H,
TN(t;qN)PNz = T(t;q)z in the V norm for t > 0, uniformly in t on compact

subintervals.

Proof: To establish these results, we first apply the Trotter-Kato theorem in
the space X = V with XN = HN. Let P{',‘: V - HYN denote the orthogonal
projection of V onto HY in the V inner product. Then hypothesis (C1) implies
PSF - f in the V norm for any f € V as well as PNf -~ f in the H norm for
any [ € H.

To carry out our arguments, we shall employ several bounds for resolvents

similar to but sharper than those of (2.4), (2.5). These bounds follow from
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results in Tanabe (cf. Lemma 6.1 of Chapter 3 in [T]); we note that our
operator A can be extended to A: V - V* as in [T] so that the results given
there are applicable as used below. (In [T), the condition (B) is assumed to
hold with )\, = 0 and we, without loss of generality, state our bounds for this

case.) The first bound we shall use yields for f € V
N/ N <
IR\(AN@ € 7 Il (2.8)

where c is independent of N. Using this with f = Plz — PNz for z € V along
with the results of Theorem 2.2 we obtain RX(AN(qN))Psz - Ry(A(@@))z in V
norm for any z € V. This is (ii) of Theorem 2.1 with X = V, XN = HYN and
PN = P

To obtain the uniform stability bound (i) of Theorem 2.1 in the V-norm,
we make use of another bound that follows from [T]. From the last bound of

Lemma 6.1, Chap. 3 of [T] one may readily argue that for f € V

M
IR, (AR(@@M)f),, ¢ ﬁl—mv (2.9)

where M, is independent of N. The arguments behind (2.9) involve using
(3.51) of [T] for A* and observing that for 7 € V, v € V* arbitrary so that

R ,(A)y eV = V** we have (using the usual notation for the duality product)

(RX(A)7'V)V".V' = (V’RX(A)V)V"V = (R X(A*)Vvy)v"v

M
< Ry (AM)VIyNy, € I—Xll— Pylvlye-

M
Then [Ry(A)7Ne € I_XIL My and hence, identifying V and V** we obtain

M
IRy (A € I_XTL My for y € V.
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We may use the bound (2.9) in the identity

PP R4
I
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o

¥ P W W

Fl

1
b ™™ = o [ MRy AN, (2.10)
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‘
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where T is a contour (about )\;) similar to that given in [P, p. 63}, to argue for

z € HN

P PR L

L%
213

At
ITN(taMzly € Me Olely (2.11)
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where M is independent of N. Thus one obtains ITN(t;qN)|V < Medot. (These

F2
s
b

7
_-n.-t; @

1

results are essentially given in [T]; one just needs to check the arguments to
ascertain that the constant M depends on AN only through the bounds ¢, and ¢,

of conditions (B) and (C) and the sector angle & for AN - where § again

1‘7
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S
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depends only on ¢, and c,.)

y ¥
P
1

P
s

e T g
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We may then apply Theorem 2.1 as indicated to obtain TN(t;q™)PYz -

?'
'i"r.
<

x
"(
s

) T(t;q)z in V norm for every z € V. It remains to argue that TN(t;qN)PNz -

Mty
s
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T(t;q)z in V norm for every z € H.
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If we use the bound (2.8) in (2.10), arguments similar to those used to

k]

h )

establish (2.11) can be made to give

2
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o

“x
23
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~ At
ITN(t:qM)zl, € Me Ot Y2z, t> 0, z e HN, (2.12)
v H

=
R

where again M is independent of N.
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Recalling that V is dense in H, then given z € H and € > 0, we may

Y
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ITN(GaMPNz ~ T(Ga)aly < ITN(6GaNPNz - PYzy)ly

+ ITNGaYMPYzy — T(a)zyly + IT(Ga)zy — 2)ly.

From (2.12) we see that the first term in the right side of this inequality is
bounded by Mclott!/2pNz — Pz ly which, as N =~ = approaches
ﬁcxo‘t'l/zlz—zvh{. The third term is also bounded by a similar expression,
i while the second term approaches zero as N = = by our previous arguments.
We thus have established the convergence claimed in the statement of Theorem

2.3.
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Among the examples that can be treated immediately with the above

2

theory are the usual parabolic systems (se¢ [BK1], [L]). To illustrate these .. @

te

v DN
Y ideas, consider the estimation problem for the standard Dirichlet boundary A
PAC A

DA

5 value problem for one-dimensional parabolic systems. That is, ::‘}-' :
13 y

du a du 3 I
—=—1la, —| + ==(q,u) + qu on 0= (0,1 NI

a[ ax [ql aX] ax (Qz ) q3 ( ) .."~J'

u(t,0) = u(t,1) = 0,

ol

.
Farsk s

K w

with q = (ql,qz,qs) to be chosen (via a least squares criterion) from Q, a

7

compact subset of C(f)) x C(?) x C(R). The state spaces are H = H), V =

e
Y

"y _¥
Pld
R P
»
B B

RAAAST W W

H(‘)(Q) and the weak form of the equation is given by

"' ? -
:"
-, r

> ®

LA

-,

E(),9> + o(a)(z(), ) =0, VeV
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where the sesquilinear form is defined as

N,

o(a)(¢.¥) = <q,D¢,DY> + <q,¢,D¥> ~ <qgp.¥2,
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with D = 8/8x. One can readily verify that conditions (A) and (C) hold,
while the coercivity condition (B) is valid if we assume elements of Q satisfy
qyx) 2v>0 for some constant v.

In this case one can specify the domain of A(q) by
dom A(q) = (¢ € HY(®) | q,D¢ + a,¢ € HY(@)

and A(q)¢ = D(q,D¢) + D(q,¢) + qg¢. For approximating elements one can use
either piecewise cubic or piecewise linear B-splines modified to satisfy the
Dirichlet boundary conditions.

We note that the theory above only requires compactness of Q in the
[C()]® topology along with relatively weak smoothness assumptions when
compared with other approaches (see [BK3], [BKLI1], [BKL2], [BCK)).
Furthermore we obtain V = H(‘,(n) convergence of the states. Hence the theory
is complete for least squares criterion involving pointwise (in x) observations
of the state. This is obtained for little extra effort when compared with the
efforts usually required to obtain the stronger convergence (see [BCK],
(BKLI1)).

Other parabolic examples of great practical importance can be readily
treated in the context of this framework. For example, the 2-D thermal
tomography problem mentioned in the Introduction and discussed in [BKO]
rcsults in a boundary identification problem for parabolic systems. With a
standard transformation these problems can be readily treated theorctically and
computationally with the approach of this paper. Details can be found in
[BKO].

Another class of problems of interest involves estimation of coefficients
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)
]
in the Fokker-Planck or forward Kolmogorov equations (see [B2]) for the case
[
where the Markov transition process for growth is time invariant in size/age
N
structured population models. In this case the equations have the form
J.‘
"
W~ LI 2 @)
\ -— = —F - < Xy,
. 3 + a—x(qlu P q,u qgu, Xg < X 1
bl with boundary conditions
,' N 0 X=Xg | d
Y au = o (q,v) =] q(Du(t,8)dg
a 0
\.. a x=xl
o
: u~—(q,u = 0.
8 [q1 o (q, )]
I
.‘l: The associated sesquilinear form is given by (here H = Ho(xo,xl), V =
l..
' 1
,::l'. H (xo’xl))
oq)(¢.¥) = —<a,9 — D(q,9),D¥> — ¢(x)R(q,)¢) + <qqp,0>
S; .
2.3
\' with R(q)(¢) = I 1 q(8)e(8)dE. Under appropriate assumptions on Q C L(f)
o ‘ %o
b x w,(,,‘)(n) x Lo(f)) x Lo(Q), Q = (x4,x,), (see [B2] for details) one can readily argue
W that hypotheses (A), (B), (C) hold. Thus these problems also fall within the
P purview of the theory developed here.
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3. Sccond Order Systems

The ideas developed in the previous section can be applied to parameter

estimation problems involving second order systems of the form
u(t) + B(q)u(t) + A(q)u(t) = f(t) 3.1

in a Hilbert space H where the operators A(qQ) and B(q) are defined via
parameter dependent sesquilinear forms in a manner similar to that of Section
2. We use the general approach given in [S]; we again assume we are given a
Hilbert space V C H that is continuously and densely imbedded in H. Let
0,(q): V x V ~ € be a symmetric sesquilinear form satisfying conditions (A)
and (C) of Section 2 and the V coercivity condition (B) with A\, = 0. Then for

each q € Q we may define continuous linear operators A(q): V = V* given by

a,(a)$.9) = (A(@O$)ye y (.2)

for ¢,¢ € V, where as customary, we have identified the pivot space H with its

dual H* i.e., V CH = H* C V* and the duality product ("')v',v is the unique
extension by continuity of the scalar product <.,-> of H from H x V to
V* x V (e.g., sce [S] for details). Of course, as in Section 2, we may also view
A(q) as a densely defined operator in H where o(q){é,¥) = <A(q)$, 9>y for
¢ € dom A(q), ¥ € V. The sesquilinear form o, and its associated operator A
will correspond to the "stiffness” operator in the examples we treat below.

A sccond sesquilinear form will give rise to the "damping” term in our
examples. We assume we arc given-a (not neccessarily symmetric) sesquilinear

form o,(q):V xV ~ C satisfying conditions (A) and (C) and the semicoercivity

R S P e S P N
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condition

(B') H-semicoercivity: There exists b 3 0 such that forq € Qand $ € V

we have

0,(Q)(¥.¥) 3 blyiZ, (3.3)

As before, under condition (C) on 0,, we may define a continuous linear
operator B(q): V ~ V* given by

o,(a)($.¥) = (B(Q)$.¥)y. y- (3.4)

Again, we may alternatively view B(q) as being densely defined in H.
However, since we may wish in general to view equation (3.1) as an equation
in V* (again following classical formulations [S], [L], [T]) we shall interpret
A(q) and B(q) as members of £(V,V*). We note that from conditions (B) and
(C) on o), the form o,(q) is, for each q € Q, equivalent to the norm inner
product in V; indeed, we can use o,(q) to define a paramcter dependent
equivalent inner product in V., We shall use Vq to denote the Hilbert space
consisting of the elements of V equipped with this inner product.

We shall rewrite equation (3.1) in first order form and to that end we
define the product spaces ¥ = V x V and ¥ = V x H. If <.,.), denotes the
inner product in V, we may us.c o, and o, to define a sesquilinear form

o: V xV-~Cgiven by
Ha)((u,v),(,¢)) = ~<v @Dy + o (al(u,g) + g,(a)v,é) (3.3)

We may then write equation (3.1) in weak or variational form as

w(t),x g + o@)(w(t),x) = <F(t),x>p, XE€EYV, (3.6)
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where w(t) = (u(t),v(t)), X = (6,¢), F(t) = (f(t),0) and <.,- Dy is the usual product

space inner product. Alternatively, we may write equation (3.1) as

w(t) = A(Q)w(t) + F(t) (3.7)

where A(q) is the opcrator associated with the sesquilinear form o in the usual

manner.
Following this approach, we define in ¥ = V x H the operator

0 I
AQq) = [ ] (3.8)
-A(qQ) -B(aq)

on dom A(q) = ((¢,¥) €¥| Y€V and A(q)¢+ B(qQ)P €H}CV. Wecan readily argue
that dom A(q) is dense in =V x H and that, under the conditions on o,and g, for
X\ > 0 the range of M — A(q) is ¥ (see the arguments given below). Moreover, 4(q)

is dissipative in X = vV, *H since for (¢,¥) €dom A(q)

<A(q)($,9).(6,9) >1fq= 0,(a)¥,9) — o,(a)($,4) — o,(Q)(¥.¥)
€ — blYF € 0.

Thus by the Lumer-Phillips theorem (e.g. see Chap. 1, Thms. 4.3, 4.6 of [P]) we find

)

o r A

that A(q) generates a semigroup of contractions on Vq x H. Since Vq and V possess

”

v »
2.
.

equivalent (uniformly in q € Q) norms, we have that A(q) is the infinitesimal

gencrator of a C,-semigroup T(t;q)on ¥ =V x H. If the form o, satisfies (3.3) with

AT

b > 0, then onc can show that this semigroup is uniformly exponentially stable,

P
N,

i, IT(q) € Mc™ for some M 2 | and w > 0. Furthermore, if the H

B
AR

. A".A.' Y

semicoercivity of (3.3) is replaced by V coercivity, ie, b > 0 and the H norm is

replaced by the V norm in (3.3), then T(t;q) is an analytic semigroupon ¥ =V x H.
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: R
K, Since we have (q)(x.8) = —<A4(Q)x,{ > for X € dom A(q) and { € V = :"':Ci
" Caal

. . PSS

’,: V x V, one might be tempted to apply the arguments and results of Section 2 :u-:’ '
ot > ’
; to this sesquilinear form with ¥V and ¥ playing the role of the spaces V and H 5
' o
& '
) in the theory of Section 2 (i.e., treat this system gencrated by 4(q) as a first o) '.:::c

'
o

" order system in ¥ and apply without modification the theory in Section 2). If :"ﬁ';
'. !
Y onc did this, then conditions (A), (B) and (C) must be satisfied by o(q) using -
[} l\*

3 Al
:.: the norms of ¥ and V. Conditions (A) and (C) pose no difficulty under the :Fz;
N Ny
:‘ assumptions of (A) and (C) on o, and g, given above. However to arguc that el
R Sy o
- oq) is V coercive (condition (B) of Section 2), one finds that the H
4%

‘. o s L] (]
semicoercivity condition (3.3) on o,(q) must be strengthened to V coercivity. ',c; )
b . |":-,
' While some damping forms of interest (e.g. strong Kelvin-Voigt damping -- we :a\ ‘

u t.i .
N discuss this below) do satisfy this stronger condition, several important types d
(" oo

.,
P of damping lead to sesquilinear forms that don't. Hence we shall modify the ::;_’
| B
A
. . g,
s, arguments behind Theorem 2.2 in order to enable us to treat the more gencral .-:,,-';
'f!ufu.
cases. L
R =, '3,".'.;
. . . . o A
. We shall throughout our discussions henceforth assume that o, satisfies BV
" xy . SN
) -

S TN,
conditions (A), (B) with ), =0, and (C), while o, satisfies conditions (A), (B'), (C). O O\
\ ALY
. Again we shall be interested in a resolvent convergence form of the Trotter-Kato ey
f. \‘.n.}
':.' theorem and hence must consider the resolvent of the operator A(q) given in :_:[f-

. '~

; Son
v (3.8). Y

-

o LAY
. To motivate our discussions, consider for X > 0 the equation in ¥ given by .o
N _:.',:.
: X = Ry(A(a)§ for X = (¢,4), ¢ = (n,7). This is cquivalent to solving for X € )
b -l r-.-J—.

- . . . . ,"' %
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‘o —¢=n
(3.9)
W+ A(q)e + B(@)d =7 .
If we substitute the first equation ¢ = A\ — n of this system into the second

we have
3o + A(Q)e + AB(qQ)¢ = 7 + A0 + B(q)n (3.10)

which must be solved for ¢ € V. This suggests that we define, for X > 0, the

associated sesquilincar form oy(q): V x V = C given by

03(a)(@,8) = 2¥ <, 5> + 0,(a)(@8) + roy(a)(w.b). (3.11)

Since o, is V-coercive and g, is H-semicoercive, we find for ¢ € V

0y(A)(9.9) = Mol + 0,(a)(9.0) + 20,(a)9,¢)
3 \ol2 + clel} + blelk

Hence for o €V

0y (a)(9.) 3 clof? + ik > clof? (3.12)

where ) = (A2 + 3b) > 0. Thus, for ) > 0, the form o, is V-coercive and the
equation (3.10) is solvable for ¢ €V for any given £ =(n,7) in ¥ =V x H. It follows
then that defining ¢ using the first equation in (3.9), we may, for any & = (n,7),
find an element X = (¢,¥) in dom(A4(q)) which solves (3.9); i.e. for ) > 0, R, (4(q))
exists as an element in £(¥).

The coercive incquality (3.12) will be the basis of our convergence

arguments.
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We consider next a Galerkin type approximation scheme for equation (3.7).

R
7

Ld

As in Section 2, we assume approximation subspaces HN ¢ V satisfying
condition (Cl1). Then for any w € ¥V = V x V and each N, there exists wN e

HN x HN satisfying as N » =

A .\-
W = wiy, = 0. (3.13) AN

e
h ]

S

To dcfine the approximating systems, we consider o{(q) defined in (3.5)

vy
)
&

754' ’

restricted to ¥¥ = HN x HM and obtain in the usual manner the operators

h 2 ]

s

'l
[y

AN(q): ®N ~ #N. Since (3.12) holds, we have immediately that R,(4™(q)) exists

ok

in 2(%M) for ) > 0. Denoting by PN the orthogonal projection of ¥ onto ¥X, we

may then prove the following convergence results which is analogous to that

PR

of Theorem 2.2 for first order systems.

-:5

Theorem 3.1. Suppose that conditions (A), (B) with %, =0, (C) for o, (A), (BY),

=

e
&

(C) for o, and (Cl) hold and let qN - qin Q Then for x > 0 we have

an

:"1
Vi@

R)‘(AN(qN))PNt ~ Ry (4(qQ))% in the V norm for any ¢t € ¥ .

MY
%

\ L}
.,s":.'
s

Y

Proof. Let § € ¥ be arbitrary and put w = w(q) = R,(4(q))¢, wN = wN(@Q™) =

o,
v &
f4

.
B

R, (4N@M)PNe. Let w = (¢,4), & = (7,7) so that equation (3.9) is satisfied by

v

this pair. Also, letting wN = (¢V,¢N), PNt = (nN oY), we have that this pair

£ r
' ]
I'd
S"‘-J‘-

satisfies (3.9) with q = qV. In particular, using (3.10) and (3.11) we find for j—

:.' £ L
s

{ ev

PN
.v'.'l.l.’
PR
S S

ay(a)@.8) = Loy + 20,00, + o,(q) (L)

e ”
e

oy (@™M(eM.0) = N>y + 2N >y + oy (@MY (N ).
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Since w = w(q) € dom(4(q)) C V, we may choose wN = (¢ ") in #VN
satisfying (3.13). Thus, choosing { = {N = ¢N - (?)N in HY ¢ V, we may use the

above equalities to obtain

0,(a)(9.t™) — 0, (@M)(eM.EN) = yNENd, + AN N

(3.14)
+ 0,(@)(M,LN) = o,(@™(nN,¢N).

We use this to argue that {N =0 in V.

N

Applying the estimate (3.12) to the element (N = N - é" and then using

(3.14) we find

c,IeM2 + NgNZ < o, (@™)(ENLM)
= 0, (@™, LY - 0,9, LY) + oy (@)(9.L™) — 0y (@™)(PN. LY
= PN, 0Ny + M N-n gD+ oy(@)(MEN) + 0,(@™)(nNEN)

+ oy (@)(et™) — o, (@™, M)
The last four terms on the right side of this equality may be written as

o,(@)(M-n,t¥) — o (a)(MN,LM) + o, (q)(N,¢N)

+ 0,(@)(99™LM + 0,(a)e™,tN) — 0, (aM)(eN.1M).

Using the definition (3.11) of o, and the boundedness and continuity in q of
A (condition (C) and (A)) along with |-}y € Kl-ly, we may bound from above

the expression in (3.16) by

c,nN=nl 1ty + d(a,a™inNlyIgNly + Cle—eMi 1Ly,

+ (10 d(a,aMieN LN
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where C = 2%? + ¢, + ), We observe that since PN is the orthogonal
projection of ¥ onto ¥N, hypothesis (C1) implies that (n¥yN) = P¥(n,7) = (n,7)
in ¥ =V x H. Thus, |'1N|v € K for some constant K. Since &N ~¢in V, we
may also assume I(';;va < K.

Recalling that x> 0, we can combine (3.15), (3.16), (3.17) and the above

observations to obtain the estimate
¢ ltNy € kiPNNyg + Ok + c)nN-n|, + K(2+))d(q,a¥) + Cle—oMy,

and thus ¢N =0 in V. That is, ¢ — c;N -~ 0in V and hence ¢~ = ¢ in V.

Recalling that (¢N¢M), (N, 7N) and (¢,9), (n,7) satisfy (3.9) with gV and q,

respectively, we have that
¢IN= Xq)N—nN and ¢ = o —n

Thus we find immediately that ¢N =~ ¢ in V. This completes the proof that

wN = (¢N¢N) = w = (¢,¢) in the V norm.

Let TN(t:qY) denote the C, semigroup generated by AN@Y) in ¥N. Then
applying Theorem 2.1 with X = ¥ , XN = ®N and AN = 4MNY), we obtain
immediatcly from the above discussions the following desired convergence

results.

Thecorcm 3.2. Under the hypotheses of Theorem 3.1, we have for each ¥ € ¥ and
t > 0, TN(t;qN)PN§ = T(t;q)¢ in ¥, with the convergence being uniform in t on

compact subintervals.

The nceded convergence results for parameter estimation problems follows
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¢ directly from this theorem. In particular, for solutions of (3.7) and their S
o o

. . . . . LA A

N approximations we have (assuming, of course, appropriate smoothness in q of I

I .7

o,

initial data and the perturbation function F)

aN
L
¢
"i‘

Y

L g
.'I.'.
"

uN(t;qN) - u(t;q) in V norm,

7t
7,7,
A

!:5'
-,

vN(t;aNy = v(t;q) in H norm.

o
0y
" - 4.

L)
Ty Ly

T v

To illustrate the types ot problems that can be investigated in the context of

L]
’2
Y
s

".'
A

the theoretical framework developed in this section, we consider a cantilevered

)

a.k

Euler-Bernoulli beam of unit iength and unit linear mass density. The transverse

oo,
s

vibrations can be described by an equation of the form (3.1) with thc operators

2
N
S

-
‘{N.
5

A(q) and B(q) chosen appropriately (see c¢.g. [BCR], [BR2}, [R] for detailed

o hr
equations). We assume that the end at x = 0 is fixed, theend atx =1isfree. Then . _.’.
RN
3 the state spaces can be chosen as H = H%0,1) and V = HZ(0,1) = (¢ € H%(0,1) | ¢(0) = \J_:".
[SA SN
\Y .
. Dg(0) = 0). The stiffness sesquilinear form o, is given by :':, !
) REMY
8
PSSy
. ! 2 2 e
" UI(Q)(‘P,‘I’) = EID (PD ‘f’ ';:‘,:: (d
0 RN
"\*.I
where we assume the stiffness coefficient q,(x) = El(x) satisfies q(x) 2 « > 0 "lf‘f
§, YW
’ and is in Lg(0,1). The operator A(q) in (3.1) is given by A(q)e = D¥EID?¢) :_.’j-_‘.':_
'
; with N
'.‘:.
3 .‘-:‘.n\.
dom A(q) = {¢ € V | EID%¢ € H¥0,1), EID%p(1) = D(EID%)(1) = 0}. ,,_,.0_'
':'_:':‘.r
:.".:-I_'_I
If we denote by q, the damping parameter to be discussed in the following :'.’: '_::-
(S,
o
! examples, then the admissible parameter set Q can be taken as a compact AV
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Q = (a = (a,8,) | q; € Laf0,1), a;(x) 3 a > 0).
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With this formulation, a number of important damping mechanisms can be

“u
K 5‘ ]
o

readily treated.

"
y 3
5
T

Viscous damping: In this case air or fluid damping is usually assumed

" '.’1}1
P

proportional to the velocity of displacement so that the term B(q)u(t) in (3.1)

L,

AP
Ceyyy
DR P o '
CEN G

[
(S

has the form bu(t) for q,(x) = b(x). The damping sesquilincar form o, is given

ABAJ
& ®

N by

rr v
4
[N

[
Y

o,(a)(@,¥) = <be¥dy

oo

o

o
%

which, for b(x) 3 0, satisfies the H-semicoercivity condition (B') but of course

o

Yy >y
[

ts not V-coercive. The domain of the operator in (3.8) is given by dom A(q) =

4
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dom A(q) x V.
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Kelvin-Voigt damning: For these models the damping moment is postulated as

&L

being proportional to the strain rate and hence the damping term has the form

» u
&

7

A

Dz(cDIDzﬁ(t)) where q,(x) = cpl(x). The associated sesquilinear form is given

by

y AEREATRENLREN
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which for cpl(x) 2 B > 0 satisfies a V-coercive condition and hence of course .
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the H-semicoercivity of hypothesis (B'). Letting M = EID%¢ + cDIDQw denote

S d
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the "moment” of the beam, we have the domain of A4(q) given by
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dom A(Q) = ((¢9) €V x H | ¢ € V, M€ H¥0,1), M(1) = DM(1) = 0).
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theoretical framework is still applicable. We note that results of the
framework then provide a distinct improvement over the results for the
problems given in [BCR] (where smoothness assumptions on solutions must be
hypothesized as well as q, > 0) and [KG] (where a stronger and less readily
characterized topology than that of C(0,1) or L(0,1) must be used for the

compactness assumption on Q).

Spatial hysteresis damping: This damping model, which has been suggested
recently and investigated by Russell in {RU], is based on physical foundations
that appear particularly appropriate for fiber reinforced composite beams,
e.g., beams of composite materials in which strands of fibers are lengthwise
bound in an epoxy matrix. The damping term has the form B(q)u(t) =
D((G(q) — vI)Du(t)) w'herc .G(q) is a compact operator in H%0,1) defined by a
symmetric kernel q,(x,y) = b(x,y) = b(y,x) 2 0 as

1

GoXx) = [ bxyevdy, @ € HOOD
1)

with b € H%(0,1) x (0,1)) and Wx) = Ll,b(x,y)dy. The associated sesquilinear

form is given by
o,(a)(e.¥) = (VI - G)De, DY,

which is readily seen to be H-semicoercive but not V-coercive. The generator

(3.8) for the semigroup has domain

dom A(q) = {(¢,4) €V x H| ¢ € V, EID%¢(1) = 0,

[D(EID?¢) + (VI — G)Dy)(1) = 0).
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Time hysteresis damping: These models, referred to as Boltzmann damping

models, have been widely studied in recent years (see e.g. [F], (BF)], [HW] and
the references therein) in connection with flexible structures. In an Euler-
Bernoulli beam as formulated above, the damping term B(g)u(t) can be
replaced by a term that has the form
-D? r g(s)D%u(t+s, - )ds
-r

where q, = g(s) = oncB'N?, o8 > 0. This means that equation (3.1) becomes a
functional-partial differential equation or partial differential equation with
delay or hereditary term. Thus the above theoretical framework is not
directly applicable. However, as is shown in [BFW], the framework developed
in this section can be appropriately modified and extended to give a succinct
theoretical treatment of approximation methods involving estimate

convergence and continuous dependence on observations for these models also.

We have used methods based on the theoretical ideas in this section to
successfully estimate damping in a number of flexible structure experiments.
To date we have studied viscous, Kelvin-Voigt, and Boltzmann damping in

vibrations of composite beams [BWIC]), [BFW].

Finally, wec note that the ideas presented in this paper can be extended to
provide a framework for the treatment of nonlinear distributed parameter
systems. The cocrcivity conditions are replaced by monotonicity assumptions
and, of course, nonlinear semigroups (evolution systems) and a nonlinear
Trotter-Kato approximation theorem play fundamental roles in development of

this theory. Details can be found in a forthcoming manuscript {BRR].
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